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Abstract: Decarbonization of existing electricity generation portfolios with large-scale renewable
resources, such as wind and solar photo-voltaic (PV) facilities, is important for a transition to a sustain-
able energy future. This paper proposes an ultra-fast optimization method for economic dispatch of
firm thermal generation using high granularity, one minute resolution load, wind, and solar PV data
to more accurately capture the effects of variable renewable energy (VRE). Load-generation imbalance
and operational cost are minimized in a multi-objective clustered economic dispatch problem with
various generation portfolios, realistic generator flexibility, and increasing levels of VRE integration.
The economic feasibility of thermal dispatch scenarios is evaluated through a proposed method of
levelized cost of energy (LCOE) for clustered generation portfolios. Effective renewable economics
is applied to assess resource adequacy, annual carbon emissions, renewable capacity factor, over
generation, and cost to build between thermal dispatch scenarios with incremental increases in VRE
penetration. Solar PV and wind generation temporally complement one another in the region studied,
and the combination of the two is beneficial to renewable energy integration. Furthermore, replacing
older coal units with cleaner and agile natural gas units increases renewable hosting capacity and
provides further pathways to decarbonization. Minute-based chronological simulations enable the
assessment of renewable effectiveness related to weather-related variability and of complementary
technologies, including energy storage for which a sizing procedure is proposed. The generally
applicable methods are regionally exemplified for Kentucky, USA, including eight scenarios with
four major year-long simulated case studies and 176 subcases using high performance computing
(HPC) systems.

Keywords: renewable energy; solar PV; wind energy; thermal generation; generation portfolio;
decarbonization; optimal economic dispatch; electric power system adequacy

1. Introduction

Changes in policy and increased awareness of environmental impacts are driving the
development and implementation of technology to significantly reduce greenhouse gas
(GHG) emissions including carbon dioxide (CO2). According to the International Energy
Agency (IEA), electric power generation around the world accounts for about 40% of
energy-related CO2 emissions and offers significant opportunities for emissions reduction
with increased variable renewable energy (VRE) generation [1].

One of the major challenges with the integration of increased clean energy is resource
adequacy, or the ability to produce sufficient generation to meet customer loads at all hours
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due to the weather-dependent variability of solar photovoltaic (PV) and wind resources.
Increased renewable penetration requires cost-effective support of firm, agile generation
that can turn on quickly when needed and operate as long as needed, and/or long-term
energy storage to handle extreme weather, peaking periods, and periods of low renewable
generation [2]. Hourly analysis of generation including VRE may not be able to accurately
evaluate the capability of firm generation to match demand with rapidly changing VRE
power output, which changes realistically at the minutely-scale.

To evaluate pathways for decarbonization through gradually increased renewable
penetration backed by firm generation, a method of ultra fast minute to minute (M-M)
multi-objective optimization (MOO) was developed for clustered generation economic
dispatch and implemented on high performance computing (HPC) systems, as described in
the current paper. The proposed general method was applied for a case study in Kentucky,
USA, (Figure 1) using actual load, renewable (Figure 2), and fossil generating unit data
provided by the state’s largest utility Louisville Gas and Electric and Kentucky Utilities
(LG&E and KU), part of the PPL Corporation family of companies. Electric power utilities
in Kentucky operate in coordination with power balancing authorities within the wider
eastern US interconnection [3].

Carbon dioxide emissions from electricity generation in Kentucky have already de-
clined by more than 40% from 2010 through 2021, due primarily to the closure of coal-fired
generators and the addition of cleaner-burning natural gas combined cycle and renew-
ables [4,5]. In the absence of federal or state policy requiring decarbonization, electric
utilities operating in Kentucky have voluntarily committed to increase renewable gen-
eration, and reduce carbon dioxide emissions, with some pledging to achieve net-zero
emissions by 2050 [6]. As additional retirements of coal-fired electricity generating units
are scheduled to occur before 2035, the important decision arises of what type of generating
resources to build next [7].

Minute-to-minute analysis also enables detailed studies into energy storage require-
ments and imbalance compensation to quantify the mismatch between weather-based
generation and expected demand on short and long-term timescales. Economic and
CO2 emissions analysis of optimization results were performed with capital expendi-
tures (CAPEX), cost to build, per clustered generation type, carbon dioxide emissions per
generation type, and a proposed method of levelized cost of energy (LCOE) for generation
portfolios considering fuel cost and cost of operation.

A first main novel contribution of the research described in the current paper is the
ultra-fast optimization of dispatchable generation to minimize generation/demand imbal-
ance and cost for a chronological year of minutely data using high performance computing
(HPC) systems. To the authors’ knowledge, this study is the first to consider such high reso-
lution in economic dispatch of thermal generation considering operational limitations. The
general method developed in this study is applicable for the analysis of large generation
fleets with units of different types considering increased operational flexibility.

Additional contributions include proposed methods for evaluating the economic and
technical feasibility of increased renewable penetration with high seasonal generation
variability. A method is proposed for calculating the LCOE of a generation portfolio

Figure 1. Maps of Kentucky annual average global horizontal irradiance and wind speed at 100 m
hub height from NREL [8]. Kentucky experiences a mild climate with large seasonal variation, and is
located at approximately 37.5° N by −85.29° E.
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(a) (b)
Figure 2. Kentucky state-wide utility solar PV (a) and land-based wind (b) aggregated minutely
generation capacity factor across the year with white dotted lines differentiating meteorological
seasons. Resources were found to be beneficially disjoint and complementary with high output from
solar PV in the summer months and wind in the winter months.

derived from equations and projections published by the National Renewable Energy
Laboratory (NREL) [9]. A second main contribution is represented by the proposed method
for improved sizing of complementary technology to reduce imbalances, while considering
energy on a minutely basis. Minute to minute chronological firm dispatch is used to assess
the limitations imposed by operational flexibility and the requirements of energy storage
for decarbonization beyond 80%.

The paper is structured as follows: a review of relevant global and regional develop-
ments and an introduction to the Kentucky specific studies in Section 2, detailed economic
load dispatch problem formulation and optimization in Section 3, and minutely simulation
cases for various generation mixes with results in Section 4. The results are further analysed
in Section 5, including a discussion of the findings with implications to future infrastruc-
ture development for renewable generation facilities, zero to low carbon firm generation,
and energy storage, based on widely used cost and emission indexes. Concluding remarks
are presented in the Section 6.

2. Global and Regional Developments and Studies—Literature Review

The cost of solar PV and wind power generation has reduced significantly over the
last decade; however, the intermittency of these resources limits the maximum amount that
can be integrated into the existing generation and transmission system without affecting
the reliability of service. For example, during a very sunny day, solar PV units can produce
near rated capacity but experience large variability in output early and late in the day,
requiring sufficient firm generation ramping capability to maximize energy utilization
and effectiveness [10,11]. On the other hand, a very cloudy day can cause periods of
low renewable generation, necessitating enough firm generation capacity to fill the deficit
between generation and demand [12]. Example variation is shown in Figures 2 and 3,
depicting the solar and wind capacity factor for each day and per week respectively.

The current North American Electricity Reliability Corporation (NERC) standard com-
monly adopted by utilities specifies that the frequency of under-generation events, a loss of
load expectation (LOLE), is at most 0.1 days per year or 99.97% reliability [2,13]. Sufficient
controllable generation is necessary to maximize effective techno-economic integration of
renewable generation, necessitating studies into the capability of firm generation to ramp
to meet expected demand, such as those reported in [10–12,14–16]. Hence, a growing field
in the scientific and technical literature focuses on analyzing the impact of integrating vari-
able renewable energy (VRE) alongside firm generation in future power system planning
and operation.

Limitations of short-term weather dependent VRE integration summarized in [15] have
found significant mismatch between demand and generation across time scales (diurnal,
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Figure 3. Average solar PV and wind capacity factor (CF), normalized load, and temperature in
Fahrenheit with irradiance for each week across the year. The capacity factors for wind and solar peak
in winter and summer, respectively, illustrating the complementary nature of the renewable resources.

daily, seasonal) with increased renewable annual energy contributions. A previous study
by other authors identified that higher resolution decarbonization studies, such as the
minutely approach proposed in the current paper, are needed to capture the nuanced
interactions between system resources and expected cost of generation [17]. Furthermore,
it was found that temporal aggregation or time slices, deployed in many previous studies,
may not capture fundamental relationships, understate the value of broad technology
portfolios, and do not solve time-based mismatch issues [18]. These studies, as well as
others reported in [16,19,20], discussed chronological simulation as necessary to capture
the challenges of long-term energy deficits due to seasonal variability.

Research into increased decarbonization, i.e., the reduction in CO2 emissions, has
been published for complete generation overhaul, examples including Germany [21], Eu-
rope [22,23], the US [24–26], and Southeast Asia [27]. In the US, previous analysis of
very high renewable energy penetration included, for example, [28] and, more recently,
the NREL-led ERGIS Integration Study that considered increased spatial and temporal
resolution to include synchronous components of the Eastern Interconnection [29]. To-
wards deep decarbonization, i.e., 80 to 100% reduction in CO2 emissions from current
levels, more than 40 studies were considered and tabulated in [30] and 88 regional studies
summarized in [31]. Within the majority of the papers reviewed, the main focus was placed
on deep decarbonization economic feasibility rather than resource adequacy with gradual
renewable adoption and none simulated chronologically minute-to-minute. This represents
a significant gap in literature that is addressed by the minutely firm generation dispatch
method proposed and the case study completed in this paper.

A variety of upcoming technologies may address the challenge of firm near zero-
carbon generation, including carbon capture and sequestration (CCS), focusing on the
extraction and removal of carbon dioxide from conventional generation [16,32], hydrogen
production through water electrolysis [27,33], and hydrogen-ready combustion turbines [34–
36]. Sizing of these complementary technologies for deep decarbonization in the near-future
will still require consideration of near zero-carbon thermal generation unit operational
flexibility [28,37].

The impact of realistic unit commitment constraints including built capacity, ramping
limits, and turn-down capability significantly affect system reliability simulation and
results with increased VRE penetration. Hybrid methods of economic dispatch coupled
with thermal generation operational flexibility were published on studies for gradual
integration of renewable generation, e.g., [19,38–41].

Hybrid economic dispatch was further developed to group distributed generation
units into clusters, combining the constraints on operational flexibility from multiple plants
as an energy type [42]. Additionally, clustered unit commitment, used in this cited study,
has been found to represent unit flexibility with very small difference in optimal solution
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and is significantly more computationally efficient, up to 15× faster than individual units
at large scale [43,44].

Sub-hourly scheduling and planning has been found prior to be not only beneficial and
essential for long-term planning but reduces expected reserves and generator movement
to balance supply and demand [45]. A recent study into VRE integration established
feasible regional penetration of solar PV through economic dispatch of thermal generation
with individual unit commitment [46]. Minute-to-minute unit commitment developed
within the study sought to capture the realistic contributions of firm thermal generation
to compensate for dips in VRE output due to quick changes in weather. Minute-based
chronological analysis, not performed in previous papers, models fast variations not
captured in typical long-term simulations and is essential for the rating and planning of
broad technologies to ensure system reliability.

Hybrid clustered economic dispatch with unit commitment constraints, optimization
was employed chronologically minute by minute for generation to meet load. Rather than
priority list stacking of generation by least cost or conventional numerical optimization,
evolutionary optimization was employed to handle the complex formulation without
simplification, allowing for future expansion of objectives, constraints, and scalability [40].
A heuristic multi-objective differential evolution (MODE) type algorithm, adapted from [47],
was chosen to identify the optimal Pareto front with comparable results to an NSGA-II
alternative at a faster speed. A detailed review of the state-of-the-art techniques for unit
commitment using genetic algorithms can be found in [48] including but not limited to DE
integration, hybrid evolutionary optimization, etc.

The example region studied, Kentucky, is a land-locked service area with a humid
subtropical Koppen climate classification (Cfa), characteristic of large seasonal temperature
variation [49]. Average solar irradiance and wind speed distribution is similar across the
region with small pockets of higher wind generation, as shown in the annual average maps
of Figure 1. Renewable generation distributed across large regions may smooth resource
output variability, enabling, in principle, more constant system generation [15,24,29,45].
Still, our analysis of minute-to-minute solar data found that generation may decrease from
100% to 10% capacity in as little time as two minutes. While current solar penetration in
Kentucky pose no risk to grid reliability, if all electricity came directly from solar and wind
resources, the availability of electricity would fluctuate greatly with the weather.

In the following, multiple scenarios of firm generation sets were considered with
varying levels of solar PV and wind penetration to analyze paths of gradual renewable
energy integration. Four cases have been simulated, as depicted in Figure 4, with a mixture
of firm thermal generation capacity with 44 subcases of increasing renewable penetration
and a ratio of 2:1 for solar PV to wind generation. The weather data are from 2018 and
includes correlated minutely measured and geospatially-aggregated solar irradiance and
wind speed from 60+ weather stations. Within each subcase, the gap between generation
and measured minutely load for 2018 was analyzed following generation MOO to minimize
system imbalance and operational cost.

Figure 4. Proposed procedure for hybrid economic dispatch and clustered unit commitment towards
analyzing the limits of renewable generation with operational flexibility. Per scenario, simulations
were run chronologically for a year of minutely data to capture high renewable variability.
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3. Economic Load Dispatch Problem Formulation and Optimization
3.1. Problem Formulation

On the pathway to increased future integration of VRE resources, planning for the
cost-effective dispatch of firm, controllable, thermal generation is essential to meet demand
due to renewable energy generation variability. A minute-based economic dispatch is
used to capture the capabilities of firm generation to complement solar PV and wind
power variation towards gradual renewable integration. Objectives for the optimization
are to minimize imbalance between generation and load, as well as the price of generation
operation including fuel/consumables, operation and maintenance, and fuel heat rate
using each firm generation type. Decision variables considered for the system are the
scheduled generation output from three firm generation types, i = 1, 2, 3, i.e., coal and
natural gas of the combined cycle and combustion turbine type, respectively, with units
distributed across Kentucky.

Thermal generation clustered unit constraints, such as ramping rate, i.e., the ability to
alter power output in each minute, and generation capacity limits must be considered to
evaluate the time constrained output. In clustered unit commitment, the capacity limits
are dependent upon the rated power capacity from all distributed units in that group.
The power output of each generator, Pi(t), is bounded by two mathematical inequality sets
as described by:

Pmin ≤ Pi(t) ≤ Pmax,

Pmax ∗ −RRi ≤ Pi(t)− Pi(t− 1) ≤ Pmax ∗ RRi,
(1)

where a maximum rated capacity, Pmax, and minimum generation, Pmin are specified for
each generator type, and the power variation for each time step is limited by the generator
ramping rate, RRi.

From these generation-specific operational limits, a power output is selected:

min
{

I(t) = |∑3
i=1 Pi(t) + Pren(t)− PL(t)|, (2)

to minimize the power imbalance, I(t), between load, PL(t), and generation considering
renewable, Pren(t), and firm capability, Pi(t). Minimal imbalance is an objective of the
optimization, as the US regional operation is coordinated through the controls of utilities
and balancing power authorities within the interconnected large power system.

With a scheduled power output from each generation type, the amount of fuel needed
to reach that power output and the overall cost of generation are calculated. Cost per
thermal generation dispatch within a minute of scheduling, Pr(t), is calculated by:

min

{
Pr(t) = |∑3

i=1(Cg + Coni + MCi) · Pi(t)|,
where Cg = HRi · FCi.

(3)

where the running cost of the generator, Cg, is a function of the heat rate, HRi; the fuel cost,
FCi; the fixed cost of consumables for emission reduction, Coni; and MCi the fixed cost of
system maintenance.

Since thermal generation unit efficiency varies with percentage output for different unit
types, heat rate is calculated using the heat requirement for power considering currently
scheduled generation following:

HRi =
a · Pi(t)2 + b · Pi(t) + c

Pi(t)
, (4)

per each generation type with thermal coefficients, a, b, c. Heat rate integration approxi-
mates the running cost of thermal generation at selected output power while considering
operational limitations.
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3.2. Optimization Method

An augmented differential evolution (DE) MODE algorithm was developed based
on the concept initially proposed in [47] and adapted to solve the linear programming
(LP) dispatch problem. A recent systematic review of optimization methods for unit
commitment problems, [40], documents the advantages of evolutionary optimization, such
as DE, in mapping the feasible solution space, while handling more complex formulations
without simplification, which may enable scaled application of the general method to larger
case studies. In addition to the advantages that evolutionary algorithms may better handle
more objectives and complexity, and for enabling the trade-offs between conflicting feasible
solutions, it has been shown in previous studies that they can support integrated decision
making [50].

The optimization was integrated into the hybrid economic dispatch and clustered unit
commitment model, as depicted in Algorithm 1, with a solution selected per minute as
the minimal cost thermal dispatch from the minimal generation/demand imbalance set
from multiple populations, as depicted in Figure 4. In the following description of the
optimization procedure, population is used in place of iterations or the number of evolution
generations in order to avoid possible confusion with electricity generation.

Algorithm 1 Pseudo-code of the implemented multi-objective optimization algorithm for economic load
dispatch based on differential evolution.

Create an initial population G1,p with designs of selected quantities from the firm generation types
while stopping criteria is not satisfied do

for each population, p, in Gn,p do
Sample random indices R

▷ Mutation
GM,n,p ← Gn,p[R[0]] + F(Gn,p[R[1]]− Gn,p[R[2]])
if RAND(0, 1) ≤ CR then ▷ Crossover

GU,n,p ← GM,n,p
else

GU,n,p ← Gn,p
end if
if f (GU,n,p) ≤ f (Gn,p) then ▷ Selection

Gn+1,p ← GU,n,p
else

Gn+1,p ← Gn,p
end if

end for
n← n + 1 ▷ Increment to the next iteration

end while

For initialization, the designs (i.e., sets of firm generation output) within an initial
population vector of the first generation are determined through uniform randomization:

gn,p,d = gp,low + ((gp,up − gp,low) ∗ RANDp(0, 1)), (5)

where d is the design index; p, the population index; n, the generation index with n = 1
to indicate the first generation; Gp,low, the lower population bound; and Gp,up, the upper
population bound.

To expand the search space, the designs within a population Gn,p are mutated in order
to create a new population (GM,n,p):

gM,n,p,d = gn,p,r1 + F ∗ (gn,p,r2 − gn,p,r3), (6)

where r1, r2, and r3 are distinct design indices selected from a random permutation that
cannot be equal to d, and F is the scaling factor, producing more population diversity as it
is increased and is typically set within the range of (0, 2) [47]. Based on designs from the
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target (Gn,p) and mutated (GM,n,p) vectors, the cross-over process determines a vector of
trial designs (GU,n,p) as follows:

GU,n,p =

{
GM,n,p if RAND(0, 1) ≤ CR
Gn,p otherwise,

(7)

where CR is the cross-over probability. It should be noted that a random value for each
of the individual design variables is generated as denoted by the RAND(0, 1) function.
The final step of selection compares the evaluations of the objective function for GU,n,p and
Gn,p to improve the Gn,p for the next generation:

Gn+1,p =

{
GU,n,p if f (GU,n,p) ≤ f (Gn,p)

Gn,p otherwise.
(8)

This multi-step process, described in Algorithm 1, is repeated until a stopping criteria,
represented by the maximum number of iterations, is satisfied. The DE algorithm employed
an initial random population, and has been applied with a population vector of 40 solutions
(20× the number of objectives), a scaling factor, F, of 0.5, and a crossover probability, CR,
of 0.7 as suggested by the primary reference [47]. The final population provides a trial
vector which populates a Pareto space of optimal designs and represents the trade off
between operational cost and total number of imbalances in the system. The minimum
imbalance dispatch at the lowest cost is selected per minute due to the potential for large
cost penalties for significant, long-lasting imbalances.

Numerous trial studies were performed to ascertain the set-up of parameters for the
optimization algorithm. For each minutely optimization, the number of populations to be
set for the stopping criteria was trialled from 10 to 400 using the correlated weather and
load data across the month of January with both the MODE and non-dominated sorting
genetic algorithm 2 (NSGA-II) algorithms. For each population size, the amount of short
term undergeneration was compared and the reduction trend with the increasing number of
populations was noted. The performance of the DE algorithm was superior to the NSGA-II
algorithm results in terms of accelerated improvement for minimizing imbalances and cost.
To give the best possible results for the case study, optimizations were conducted at the
maximum considered of 400 populations per time step.

All 176 subcases of solar PV and wind power generation within this study were
simulated using Python in parallel with each generation portfolio solved on a separate core
of a large high-performance computer (HPC). The optimizer used Intel(R) Xeon(R) Gold
6144 CPUs with a frequency of 3.50 GHz, which could run 400 iterations per timestep in 1.3 s
for an overall simulation runtime of approximately 8 days per subcase for 525,600 timesteps.
The procedure illustrated in Figure 4 can be performed for different locations and regions
and is scalable to larger power levels.

3.3. Input Data and Assumptions

Input data for an optimization case study was sourced from measured data across
the state of Kentucky and used assumptions for generator operation in-line with actual
utilization. Minute resolution load data were measured across the service area of the
Louisville Gas and Electric and Kentucky Utilities, part of the PPL Corporation family
of companies.

Bounds on operational flexibility are derived from real generator characteristics. Nat-
ural gas combustion turbine (NGCT) generation, for example, has regulatory limits on
maximum capacity due to its large emissions output. Coal generation, the slowest to ramp
up and with low turn-down flexibility, is used as a base-load with a minimum power output
near 40% of rated capacity due to its long starting/stopping time. Coal maximum capacity
varies each day depending on coal generation used to meet load within the year 2021. When
the maximum capacity changes between days, so does the minimum base load generation.
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Natural gas generation comprises two types: combined cycle (NGCC) and combustion
turbine. The ramp rate, heat rate coefficients, fuel cost, consumables cost for emissions
reduction, and maintenance cost for fuel generation types are summarized in Table 1.

Capacity factor of solar PV and wind turbine power output is defined as the ratio of
current output to maximum capacity and was derived from measured data and expected
device parameters. Solar irradiance and wind characteristics, which were employed to
create an aggregated capacity factor, were collected from the MesoNet, a network of 60
weather stations distributed throughout Kentucky [51]. Wind turbine capacity factor was
derived from wind speed assuming a cut-in speed of 2.5 m/s, a nameplate wind speed of
13 m/s, and a cut-out wind speed of 30 m/s.

The solar PV capacity factor corresponds to one of the best case generation scenarios
with relatively predictable power output through the day and low cloud cover, as shown
in Figure 2a. The wind capacity factor, while suffering from relatively large variability,
complements daily solar cycle generation and seasonal power output reduction with
generation during the night and across the colder months, as illustrated in Figure 2b. As an
illustration of the solar and wind resources, average capacity factors per week are plotted
in Figure 3 together with temperature measurements sourced from data collected at the
E.W. Brown solar farm owned by LG&E and KU [52]. The combination of temperature
and capacity factors indicate a strong potential for synergistic renewable deployment with
wind peaking in the colder months and solar peaking in the warmer months.

For each predefined mixture of firm generation types, 44 sub-cases of varying renew-
able penetration were simulated with a 2:1 ratio of solar power to wind power generation.
Factors not included in the modeling were transmission losses, interconnection costs for
improvement, stability analysis, and transmission line limitations. Trading or transfer
between external regions is not considered and all energy is generated and consumed
within the region. The maximization of VRE utilization was prioritized and sufficient land
surface (acreage) was assumed to be available for renewable deployment. Additionally, all
generation was assumed to be available for commitment across the year with no downtime
or maintenance required.

4. Minutely Economic Dispatch Case Studies
4.1. Pathways to Decarbonization Scenarios

Eight scenarios were proposed and studied to better understand the impact of thermal
generation operational constraints with gradually integrated VRE generation. Four of these
scenarios were optimized using economic dispatch while the remaining four were derived
for cost and emissions analysis. Within each scenario, firm capacity portfolios were defined
such that their combined capacity would meet the current generation capability within the
LG&E and KU service area.

The four simulated scenarios are meant to capture the influence of gradual integration
of solar and wind resources and firm generation flexibility: CS, the current energy port-
folio with solar; CSW , the current portfolio with solar and wind; NGS, replacing all coal
with natural gas and solar; and NGSW , natural gas-dominant generation with solar and
wind. The additionally derived scenarios include the current generation portfolio, C; the
current portfolio converted to all natural gas, NG; the introduction of carbon capture and
sequestration, CCSSW ; and the introduction of hydrogen fuel cells, HSW .

Table 1. Ramp rates, cost coefficients, and fixed maintenance and operation costs for the three types
of thermal generation considered in the case study.

Type Ramp Rate
[%] a [10−3] b c Fuel Cost

[$/MMBtu]
Aux

[$/MWh]

NGCC 4 0.000385 7.700745 630.0665 176 1.28
NGCT 20 0.020731 2.741114 753.0348 176 5.65
Coal 1.23 0.000001 10.5 0.00001 196 2.34
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(a) (b)

(c) (d)

Figure 5. Full year minutely simulation of optimal power dispatch for 4 decarbonization scenarios:
(a) CS; (b) NGS; (c) CSW ; and (d) NGSW . Compared to natural gas at the same solar PV ratings,
coal-dominant cases suffer from a significant under-utilization of available VRE generation.

Gradual renewable adoption was simulated within each scenario by varying the rated
capacity for solar PV from 0 to 20 GW and for wind turbines from 0 to 10 GW. In order to
assess the VRE penetration impacts and effective economics, the maximum capacity of solar
PV and wind was sized to supply two times the maximum demand. For the example land-
locked region of Kentucky, hydropower is limited in availability to a maximum 143 MW.
The generation portfolios studied for each scenario are summarized in Table 2.

4.2. Simulation Results

Economic dispatch results with increasing penetration varied significantly depending
on the season and mixture of firm thermal generation. For coal-dominant cases, it was
found that renewable integration is limited due to low ramp rates and turn down capability
of the coal generation. Natural gas dominant generation benefits from more agile ramp
rates and turn down capabilities, allowing larger renewable capacity integration. In the full
year results for the four simulated cases shown in Figure 5 the coal-dominant cases (a) and
(c) have to curtail renewable generation significantly as compared to natural-gas dominant
cases (b) and (d).

Table 2. Summary of generation portfolio capacity with thermal and renewable energy resources.
Solar and wind capacity were varied within sub-cases and simulated to emulate gradual renewable
energy integration. All values are in GW.

Case
[GW] Coal NGCC CCS Hydrogen NGCT Hydro Solar Wind

C 5 0.7 0 0 2 0.1 0.1 0
NG 0 5.6 0 0 2 0.1 0.1 0
CS 5 0.7 0 0 2 0.1 0–20 0

NGS 0 5.6 0 0 2 0.1 0–20 0
CSW 5 0.7 0 0 2 0.1 0–20 0–10

NGSW 0 5.6 0 0 2 0.1 0–20 0–10
CCSSW 0 0 7.6 0 0 0.1 0–20 0–10

HSW 0 0 0 7.6 0 0.1 0–20 0–10
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(a) (b)
Figure 6. Example weeks of economic dispatch with a coal-dominated scenario for (a) a high
renewable capacity factor week from May 8–14 and (b) low renewable capacity factor week from
January 8–14. Renewable output may need to be significantly curtailed compared to natural-gas
dominant generation due to slow turn-down and start-up times specific to coal operation as a
base load.

Two weeks are exemplified from case Csw in Figure 6a,b, one with the highest combined
average renewable capacity factor from May 8 through 14th and one with the lowest from
January 8 to 14th, respectively. It is visualized that when significant overgeneration occurs
it cannot be used to meet demand due to the inflexiblity of baseload operation from
coal. Additionally, the limited flexibility of generation leads to large utilization of NGCT
in the low capacity week in Figure 6b to close the gap, costing more to operate and in
CO2 emissions.

Natural gas-dominated firm dispatch mixtures from the NGsw case are shown in Figure 7
with significantly increased VRE utilization in Figure 7a and sufficient NGCC capacity and
ramping capabilities to close gaps without requiring NGCT in Figure 7b. The transition from
coal to natural gas dominant generation enables greater potential to decarbonize with the
gradual integration of VRE resources, while greatly decreasing thermal generation emissions.

Solar and wind resources are expected to complement one another because solar PV
generation outputs during the day and wind generation yielding considerable output
during the night. Seasonal variation also drastically changes output with maximal solar
capacity factor in the summer, while wind capacity factor is improved in the cooler months
(see also Figure 3). The combination of solar and wind resources allows for more renewable
penetration than either solar and wind alone due to their time shifted generation periods.

5. Results and Discussion
5.1. Technical Feasibility

In order to ensure both the technical and the economic feasibility, the resource ade-
quacy for the four scenarios of mixed firm generation with increasing VRE was studied for
imbalances represented by the difference between load demand and generation. Limits for
minute averaged generation power deficits vary greatly depending on the large intercon-
nected system with particular definitions by regulators [13,53,54], or previously proposed
in the scientific literature, e.g., [29,55,56]. Post-processing was used to monitor simulation
imbalances larger than a threshold of 100 MW or 1.5% of the maximum expected load.
Consecutive imbalances are considered long-term or significant if larger than this threshold
for longer than 15 continuous minutes as in [46].

None of the four scenarios suffer from long term undergeneration even at high VRE
penetration indicating resource adequacy for all four scenarios with the accompanying
thermal generation. If there were to be deficits smaller than 100 MW for shorter than 15 min
due to short-term uncertainty of renewable generation, peaking reserves or energy storage
rated at 100 MW, 25 MWh can handle minute to minute imbalances. The introduction of
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(a) (b)
Figure 7. Example weeks of economic dispatch with a natural gas-dominated scenario for (a) a high
renewable capacity factor week from May 8–14 and (b) low renewable capacity factor week from
January 8–14. Utilization of natural gas-dominant generation allows for greater renewable potential
due to faster ramping rates.

wind resources may increase minute to minute or short-term undergeneration due to large
minute-to-minute variability relative to the thermal generation ramping capability.

Of the four optimized scenarios, there are two major groups, coal-dominant cases with
a baseload and small ramping rate, colored in grey, and natural gas-dominant cases with
two variant generation types of slower and faster ramping rates, colored in beige. Total
annual overgeneration is depicted in Figure 8 with four distinct trends correlated to the
dominant thermal generation type and the combination of solar and wind. Renewable
penetration, used throughout for the differentiation between subcases, is defined as the
ratio of annual renewable energy generation to annual energy generation throughout
the year. Typical methods for handling overgeneration, which may increase with the
renewables penetration, include regional energy trading and power flow, energy storage,
and curtailment.

Within all four thermal generation mixtures, a limit level may be considered for
integrated VRE capacity related to significant annual overgeneration. At low values of
overgeneration, under two example levels of 0.1 and 1 TWh, respectively, natural gas-
dominant cases can effectively use approximately double the amount of renewables without
significant curtailment compared to coal-dominant generation. This effect benefits of the
increased operational flexibility of natural gas generation including ramp rate and turn
down capabilities. Overall, the integration of both solar PV and wind generation allows for
increased effectiveness due to distributed temporal generation and seasonal capacity factor
variation with wind being better in the winter and night and solar PV being best during
summer days.

Figure 8. Annual overgeneration for four generation portfolios plotted together with two example
imbalance levels at 0.1 and 1 TWh, respectively.
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5.2. Effective Renewable Integration

To analyze the impact of VRE introduction on CO2 emissions over time, carbon
intensity can be approximated as the product of thermal generation per minute and the
median of the published total life cycle emissions factor per generation technology recently
published by NREL [57]. Example results for coal and natural gas dominant generation
are shown in Figure 9a,b, respectively, with renewable capacity factor as the normalized
output of renewable generation relative to maximum capacity. The expected outcome for a
theoretical optimization with carbon intensity as a third objective is reflected in Figure 9b,
as natural gas is scheduled to match demand with half of the carbon emissions of coal.
The switch from coal-dominant generation to natural gas-dominant generation halves the
expected annual CO2 emissions as it will be later discussed with portfolio-level analysis.

Quick and large spikes in carbon intensity, shown in Figure 9, occur to compensate for
variability and periods of low VRE output in both scenarios correlating with periods of fast
ramping. Distributed solar generation with low minute to minute variability ultimately
leads to greatly reduced spikes in the intensity of CO2 emissions when compared to more
rapidly varying wind power output. Due to the short nature of the large ramping spikes,
short-term energy storage may be used to mitigate significant portions of carbon output to
compensate for large variability. The heatmaps from Figure 10 illustrate that the majority
of the overgeneration within the studied cases occurs during the daytime hours revealing a
potential for shifting the generated energy in time through demand response or storage.

Overgeneration due to high renewables penetration diminishes the benefits of in-
creased renewable energy, as curtailment, trading, or energy storage may be needed to shift
excess generation or demand in time. A renewable capacity factor was calculated consider-
ing overgeneration from the output of the economic dispatch to quantify deterioration in
renewable economics with curtailment:

CF =
Es + Ew − Eo

8760 · (RCs + RCw)
, (9)

where an Es and Ew are the annual solar and wind energy generation, respectively, and Eo
is the annual energy overgeneration, over the 8760 h of the year and RCs and RCw are the
maximum solar and wind power capacity, respectively. The results for the four scenarios
plotted in Figure 11 show a decline in renewable generation effectiveness with increased
penetration and curtailment. Renewable capacity factor for coal-dominant cases diminishes
after 17–20% while potential for natural gas-dominant cases decreases after 30–35% due to
their faster turn up and turn down rates.

(a) (b)
Figure 9. Example week of economic dispatch carbon intensity for a high renewable capacity
factor weeks with (a) coal-dominant support and (b) natural gas-dominant support, respectively.
Large spikes in carbon intensity occur in response to renewable power fluctuation. Quick spikes
appear to peak and meet demand which can be compensated for with short term energy storage or
demand response.
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Figure 10. Positive imbalance magnitude and frequency increase with installed renewable energy
capacity as overgeneration does not cover unfulfilled demand. Shifting energy in time to meet
temporal mismatch between renewable output and demand increases utilization potential.

Increased renewable penetration studies revealed constraints towards maximizing
renewable economics. The effect of improved operational flexibility of natural gas over coal
is reflected in Figure 8 as more renewable energy can be effectively hosted and integrated
into the system. Once a level is reached in VRE penetration, additional capacity fails to
contribute to covering demand and limited contributions to emissions reduction may result
from VRE output in low capacity periods. Shifting energy demand and/or overgeneration
in time and/or the deployment of low-carbon firm generation is beneficial to allow for
increased utilization of VRE generation.

5.3. Uncertainty, Peaking Reserves, and Energy Storage

Previous studies by other authors have discussed the effect on unit commitment of
uncertainties, due to, for example, variability in operational downtime, expected load,
and renewable energy output [40,58]. The application of our minute-to-minute proposed
method, which is tightly optimized for expected weather data able to capture the inherent
variability of wind and solar PV output, would benefit, in principle, from advanced and
precise forecasting [45]. Furthermore, in order to assess the capability of peaking reserves
and energy storage to compensate for weather-related uncertainty, stochastic evaluation
was undertaken. The results of a theoretical comparative weekly example study between
the optimal dispatch for a natural gas dominated case to the same dispatch with a 15%
largely reduced renewable energy output is presented in Figure 12a,b, respectively.

Minute-based chronological imbalance analysis enables an additional step to sys-
tematically size energy storage, such as the battery employed in this theoretical example,
to resolve the uncertainty-caused deficit. A proposed post-processing procedure con-
sidering energy and power capacities, round trip efficiencies, and self-discharge rates is
presented in Figure 13. The power and energy capacity for the Li-Ion battery in this example
was iteratively selected based on minimizing undergeneration and battery energy capacity.

The theoretical example has been purposely selected to illustrate visible differences
in Figure 12 and numerically show how chronological minutely simulation can track rel-
atively small power deficits that can accumulate over time, requiring significantly large

Figure 11. Capacity factor for the studied cases, including possible curtailment at higher renewable
penetration.
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(a) (b)
Figure 12. Example week of economic dispatch for in the critical month of January for a gas dominated
system with for 6.5 GW solar PV and 3.25 GW wind capacity with (a) dispatch with pre-defined
weather data and (b) reduction in VRE output by 15% post-dispatch and battery energy storage for
matching load demand.

Figure 13. Proposed procedure for sizing of the energy deficit and potential solutions for a specified
generation portfolio. Minute to minute variation largely defines reliability for systems with high
renewable energy penetration and can be accounted for using a broad spectrum of technologies to
shift energy when needed.

energy storage capacity and/or fast-ramping firm generation. The example natural gas
dominated case in the critical month of January has 6.5 GW solar PV and 3.25 GW wind
capacity. For a reduction in renewable power output by 15% through the week, energy stor-
age is sized to 0.5 GW and 9 GWh to compensate for shortfalls in generation. The very large
battery capacity required in this extreme case also highlights the benefit of alternatively
employing peaking reserves, such as NGCT generation.

Increased renewable generation integration may expose the power system to sharp
changes due to weather variability, necessitating quickly ramping resources and/or energy
storage. Time variation of available battery state of charge (SOC) for two case studies of
a natural gas dominant scenario is plotted in Figure 14. The dips in the available SOC
correspond to discharging to compensate imbalances on a minute basis. It should be noted
that there are only very few and short periods without imbalances, such as those circled in
blue in the month of March. There are also sharp drops in renewable power output leading
to the very low SOC occurrences circled in green during summer and fall, respectively.

The rising deployment of electric vehicles (EV) opens up additional opportunities
for distributed energy storage with managed control for charging and vehicle to grid
(V2G) capability [37,59]. In principle, the EV batteries have great potential for storing
renewable overgeneration during the day and for supplying the grid during evening
and night. Additionally, mixtures of diverse energy storage systems including hydrogen,
and centralized storage may prove greatly beneficial towards meeting the energy deficit
due to different operational timescales, efficiencies, and costs [15,27,60].
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(a) (b)
Figure 14. Battery energy storage sized to solve minutely imbalances with plotted available SOC
across the year for natural gas dominant generation with (a) 20 GW of solar PV capacity, 10 GW
of wind capacity, rated power of 4.6 GW, and energy capacity of 0.41 GWh; and (b) 6.5 GW solar,
3.25 GW wind, 2.5 GW power, and 0.112 GWh energy capacity. Dominant renewable generation
significantly shifts the expected maximum peaking power to meet quick drops in VRE output and
BESS energy capacity is non-linearly related to renewable capacity.

Table 3. Table of CAPEX construction cost and CO2 emissions rates per generation type.

Coal NGCC CCS NGCT Hydrogen Solar Wind

CAPEX
[$/kW] 3055 883 2304 1025 2700 1121 1135

CO2
[lbs./kWh] 2000 800 80 1200 80 N/A N/A

5.4. Cost to Build per Portfolio

Economic feasibility per scenario was quantified by approximating the cost to build
additional generation to the current LG&E and KU generation portfolio, which is specified
in Table 2 as C, using capital expenditure (CAPEX) construction costs and approximating
the emissions reduction using the annual production per generation type similarly to
previously published studies [9,23,39]. Table 3 summarizes the CAPEX construction costs
from the 2021 NREL ATB [9]. Per portfolio, the cost to build was estimated as the product
of rated generation capacity and that type’s CAPEX cost per kW. Emissions rates per
generation type were also used as measured from LG&E and KU’s generation plants
with hydrogen fuel cost to build and emissions approximated based on ongoing research.
Renewable energy generation was assumed to be CO2 emission-less.

Eight scenarios were extrapolated from the four optimized cases described prior,
assuming the same ramping rate and capacity for different technologies. The resulting
CAPEX cost to build and emissions reduction relative to the current Kentucky generation
portfolio, C or the large dot, is plotted in Figure 15. From 0 to 35% emissions reduction,
there are many low-cost renewable options that are currently actionable. Coal-fired elec-
tricity generation is not only the most carbon-intensive generation technology, but also
one of the least able to integrate intermittent renewables with diminishing returns for
emissions reductions. For the existing portfolio, solar PV can be effectively integrated
up to approximately 20% and furthermore, the combination of wind and solar allows for
additional emissions reduction.

Transitioning from coal to natural gas generation results in a 50% reduction in emis-
sions without renewable integration, as shown by the NG, the diamond, in Figure 15. The
reduction in CO2 emissions with increased renewable penetration stagnates without firm
generation with faster ramping rates or shifting in time to meet unfulfilled demand, in line
with expectations based on findings published by other authors, e.g., [15].
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5.5. Levelized Cost of Energy per Generation Portfolio

A method is proposed to describe the levelized cost of energy (LCOE) of generation
portfolios consisting of multiple generation types. Additional LCOE was calculated starting
from the current generation portfolio to compare the lifetime cost of electricity generation
per subcase over a 30 year period. The LCOE per generation source was derived from
methods published in the NREL’s 2021 Annual Technology Baseline (ATB) [9] and adapted
from the formulation described in [61] to summarize the portfolio cost by combining all
generation technologies.

Combining LCOEs per generation type, the following relationship was used to ap-
proximate the combined LCOE ($/MWh) per portfolio:

LCOE =
7

∑
i=1

(
FCRi ∗ CAPEXi + FOMi

ED
+ VOMi + FCi

)
∗ EGi

ED
, (10)

where i is the generation type, including fossil-based and renewables; FCR the fixed charge
rate or amount of revenue per dollar of investment collected annually to pay for the initial
investment; FOM the annual fixed operation and maintenance cost; ED the total energy
demand for the year of 2019; EG is the energy used from that generation type; VOM the
variable operation and maintenance cost per MWh; and FC the fuel cost per MWh.

Technology-specific parameters, including FCR, FOM, VOM, CAPEX, and FC, were
extracted from the NREL 2021 ATB based on 2019 data prior to COVID-19 related disrup-
tion. All fixed charge rates and operation and maintenance costs were assumed to follow
conservative technology innovation with classes associated with the type of generation in
Kentucky specifically solar-utility PV class 7, land-based wind class 4, and hydropower
class 5 classifications. Hydrogen fuel is assumed to be readily available and equivalent to
NGCC operation. The 30 year lifetime demand is directly copied from the sample year of
minutely load. For each generation type, a ratio was implemented to LCOE per generation
type to the total energy demand over the year, approximating LCOE if generation capacity
was perfectly sized to annual utilization.

Trends in the cost and emissions resulting from renewable energy integration in the
example study vary greatly depending on the dominant fossil fuel used for generation
as shown in Figure 16. The addition of solar PV and wind resources to coal-dominant
generation results in an additional LCOE near zero as the cost of installing more renewable
resources negates the operational costs of thermal generation up to a limit. After this limit,
which is approximately 20% for solar PV and higher for solar and wind combined, increases
to generation capacity require significant capital investment.

Figure 15. CO2 emissions reduction vs. capital expenditure (CAPEX) cost to build relative to the
current generation portfolio. Transition from coal dominant to natural gas dominant generation could
reduce emissions by half. Solar and wind co-integration allows for increased VRE penetration as
their generation timing is displaced from one another.
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Figure 16. Lifetime CO2 emissions reduction from current Kentucky generation vs. LCOE of
generation portfolio construction and operation for a 30 year period. The introduction of VRE reduced
emissions and the LCOE non-linearly increased with higher renewables penetration. Operation,
maintenance, and fuel costs lead to an increased gap in cost between coal, natural gas, and low-carbon
dominant cases.

In the case study, natural gas and low carbon thermal generation dominant scenarios
require significant capital investment for capacity development with an initial peak in
LCOE. Higher renewable generation results in emission reduction and offsets operational
costs and the need for some thermal generation capacity, resulting in a lower cost. As re-
newable generation increases, there is a limit for this trend, around 70% with solar and 80%
with combined solar and wind.

Towards the development of low-carbon firm generation, carbon capture and seques-
tration, as well as green hydrogen generation and storage, are emerging technologies to
maintain control of generation timing while greatly reducing emissions. Carbon capture
and sequestration technologies (CCS) capture and restrict carbon emissions from genera-
tion plants, resulting in greatly reduced emissions for firm capability. Hydrogen energy
storage and thermal generation is another alternative, allowing for green electrolysis using
overgeneration and thermal generation when necessary to fill in the gap. New combus-
tion turbine and combined cycle capacity may be further developed and integrated with
hydrogen and carbon-capture to additionally reduce—or completely eliminate—carbon
dioxide emissions.

5.6. Kentucky Regional Case Study Specific Conclusions

The results of the case study indicate that moderate amounts of regionally dispersed
solar PV generation, up to approximately 20%, could be integrated into the current portfolio
at low costs without significant imbalances. Additional renewables up to 25% may be
integrated without increases to additional LCOE if a balance of solar and wind generation is
used due to their temporally shifted generation. At high renewable penetration, the benefit
of additional renewable generation decreases as more generation has to be curtailed due
to over-generation and the inability to shift generated energy to timely coordinate with
load demand.

Deep decarbonization and renewable integration, from 20 to 80%, can be achieved
with the replacement of older coal-fired units, which are unable to effectively adjust output
for variable generating resources, with new natural gas generation. Transitioning from coal
to natural gas generation also results in a substantial reduction in emissions, with more than
50% reduction possible even without renewable integration. Furthermore, replacing coal
with natural gas generation also enables the effective integration of double the renewable
generation when comparing overgeneration because of increased operational flexibility.
Firm generation is currently necessary to maintain system reliability, and the integration of
resources with greater flexibility can allow more immediate and effective investment in
renewable energy generation.
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Complete decarbonization between 80 and 100% necessitates the implementation of
higher cost, emerging technologies, such as large-scale energy storage, potentially from
EVs in V2G operation, large-scale demand response and electric power distribution virtual
power plants, advanced nuclear, carbon capture, or renewable green hydrogen sources.
New natural gas combustion turbine and combined cycle capacity can be built using
current state of the art technology and integrated with hydrogen and carbon-capture to
further reduce—or completely eliminate—carbon dioxide emissions. Current R&D is
focused on improving the performance and efficiency and lowering implementation costs
for such technologies.

6. Conclusions

The method proposed for optimized economic dispatch employs a minute-based ap-
proach that is able to consider the fast changes specific to variable renewable energy (VRE)
generation and required measures to ensure the balanced operation of the electric power
system. The method has been implemented with differential evolution algorithms and
demonstrated through year-long simulations with detailed minutely resolution data for
weather, load, and operational constraints, resulting in large-scale computational problems
that have been paralleled and solved on high-performance computing (HPC) systems.
The proposed chronological clustered economic dispatch method may support the anal-
ysis of different generation portfolios considering operational flexibility and renewables
natural variability.

The generally applicable simulation procedures have been applied for a regional case
study in Kentucky, USA with eight different scenarios including varying mixtures of firm
and renewable generation capacity. These provided examples for evaluating feasibility,
estimating overgeneration and the effectiveness of VRE integration, cost to build, and car-
bon dioxide emissions reductions, alongside a proposed method for mixed generation
portfolio levelized cost of energy (LCOE). The results illustrate the advantages, in terms
of improved operational flexibility for electricity generation and support for larger scale
integration of renewables, for the faster ramping natural gas power plants, as compared
with those using coal. The proposed minute-based methods are also suitable for sizing
energy storage systems, which can further support the very large penetration of renewable
energy generation.
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Nomenclature
The following main symbols and abbreviations are employed in this manuscript:

ATB Annual technology baseline
C Current coal-dominant energy portfolio case for example region
CS Adaption of C case with added solar generation
CSW Adaption of C case with added solar and wind generation
CCS Carbon capture and sequestration
CCSSW Adaption of NGSW case with full adaptation of CCS
CAPEX Capital expenditures
CF Capacity Factor
Cfa Temperate, dry winter, hot summer Koppen climate classification
Cg Running cost of generator
CO2 Carbon dioxide
Coni Cost of consumables for emission reduction
CPU Central processing unit
CR Cross-over probability
d, p, n Design, population, and generation index
ED Total energy demand for the year 2019
EGi Energy used per generation type
EO Annual overgeneration
ERGIS Eastern Renewable Generation Integration Study
ES, EW Annual solar and wind generation
F Scaling factor
FC Fuel cost
FCi Fuel cost
FCR Fixed charge rate
FCRi Fixed charge rate per generation type
FOM Fixed operation and maintenance
FOM Annual fixed operation and maintenance cost
g Elements within generation vectors
GHG Greenhouse gas emissions
HPC High performance computing
HRi Heat rate
HSW Adaption of NGSW case with hydrogen generation
IEA International Energy Agency
I(t) Power imbalance
LCOE Levelized cost of energy
LG&E and KU Louisville Gas and Electric and Kentucky Utilities
LOLE Loss of load expectation
MCi Cost of maintenance
M-M Minute to minute
MODE Multi-objective differential evolution
MOO Multi-objective optimization
NERC North American Electricity Reliability Corporation
NGCT Natural gas combustion turbine
NGCC Natural gas combined cycle
NG Current energy portfolio case with all coal replaced with NG
NGS Adaption of NG case with added solar generation
NGSW Adaption of NG case with added solar and wind generation
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NREL National Renewable Energy Laboratory
NSGA-II Non-dominated sorting genetic algorithm 2
Pi(t) Power output of each thermal generator
PL Load
Pmin Minimum rated capacity
Pmax Maximum rated capacity
Pren Renewable output
Pr(t) Cost per thermal generation dispatch
SOC State of charge
RANDp(0, 1) Function to produce a set of random values (0 and 1)
RCS, RCW Rated capacity of solar and wind
RRi Generator ramping rate
r1, r2, r3 Distinct design indices not equal to d
VOM Variable operation and maintenance
VOM Variable operation and maintenance cost
VRE Variable renewable energy
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