According to Thomas Novak, professor and Alliance Coal Chair in the Department of Mining Engineering at the University of Kentucky, approximately 50 percent of all coal produced in underground mines in the U.S. comes from a particular kind of underground mine called a longwall mine. While such mines are quite productive, they are not effective at reducing the amount of dust generated by longwall shearers, which extract the coal. Whether respirable dust, which is harmful if breathed over a miner’s career, or float dust, which carries the potential for an explosive dust cloud if the mine is subjected to an ignition of methane, dust is hazardous to safe and sustainable mining.
In an attempt to combat dust emissions, Novak and Assistant Professor Chad Wedding have created a full-scale model of a longwall shearer that features a fully functional scrubber system.
“Scrubbers aren’t new to underground mining,” explained Novak. “Continuous mining operations — which are different from longwall mining operations — have used what are called flooded bed scrubbers successfully for quite some time. Basically, we are trying to bring what we know works for one method of mining to another method that suffers from more difficult dust control.”
While both Novak and Wedding are mining engineering professors at UK, they bring expertise in other fields to this project. Novak received his undergraduate degree in electrical engineering; Wedding earned his in mechanical engineering. Novak designed the electrical and computer-control system for the scrubber and Wedding fabricated all of the components with the help of the college’s machine shop and used a 3-D printer to create a mold for the scrubber’s 32 cutting picks.
Because longwall shearers face vertical height restrictions, it is not possible to simply attach a scrubber onto an existing machine;